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Abstract
1. In recent years, the availability of airborne imaging spectroscopy (hyperspectral) 

data has expanded dramatically. The high spatial and spectral resolution of these 
data uniquely enable spatially explicit ecological studies including species map-
ping, assessment of drought mortality and foliar trait distributions. However, we 
have barely begun to unlock the potential of these data to use direct mapping of 
vegetation characteristics to infer subsurface properties of the critical zone. To 
assess their utility for Earth systems research, imaging spectroscopy data acquisi-
tions require integration with large, coincident ground-based datasets collected 
by experts in ecology and environmental and Earth science. Without coordi-
nated, well-planned field campaigns, potential knowledge leveraged from ad-
vanced airborne data collections could be lost. Despite the growing importance 
of this field, documented methods to couple such a wide variety of disciplines 
remain sparse.

2. We coordinated the first National Ecological Observatory Network Airborne 
Observation Platform (AOP) survey performed outside of their core sites, which 
took place in the Upper East River watershed, Colorado. Extensive planning for 
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1  | INTRODUC TION

Spatially explicit and integrated measurements of ecological, bio-
geochemical and hydrological processes are increasingly important 
to test ecological theory and understand critical zone (CZ) evolution 
at higher spatial resolutions and increased levels of complexity. The 
critical zone concept, the integrated envelope of hydrobiogeochem-
ical functioning from the top of vegetation canopies to the base 
of weathered bedrock, and its importance in our understanding of 
ecological processes, is a natural outgrowth of a long tradition of 
considering life and the life-supporting components of the planet 
as inextricable from one another. This integrated perspective has 
roots in Vernadsky's (1926) Biosphere, Tansley's (1935) ecosystem, 
Cole's (1958) ecosphere, Jenny's state factor framework for eco-
systems (Amundson & Jenny, 1997), and Troll's geoecology or geo-
ecosystems (Huggett, 1995; Troll, 1971). Current focus on exploring 
these interrelationships can be seen in a variety of efforts, from 
international Critical Zone Observatory (CZO) networks (Banwart 
et al., 2012; Brantley et al., 2017), to the grand challenge put forth 
by the U.S. National Research Council to explore the coevolution of 
landscapes and ecosystems (National Research Council, 2010; Troch 
et al., 2015), to efforts to incorporate hillslope hydrology into Earth 
system models (ESMs; Fan et al., 2019). Central to development 
of spatially explicit characterizations are remote sensing methods, 
paired with high-quality ground calibration data and supported by 
rapidly increasing computational capacity. These data can quantify 

surface and subsurface properties of the Earth system over extents 
and resolutions not possible to assess via ground-based sampling 
alone and have the potential to extend into areas that are remote 
and inaccessible. An understanding of these relationships and pro-
cesses taking place across the CZ is essential for predicting eco-
system functioning, water resource availability and Earth system 
resilience to global change.

High fidelity imaging spectroscopy data, also known as hyper-
spectral data, have shown great promise for improving assessment 
of land surface characteristics over large areas and at fine spatial res-
olutions. NASA's Jet Propulsion Laboratory (JPL) initiated this effort 
with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
programme and the AVIRIS Classic sensor, an airborne visible to 
shortwave infrared (VSWIR) imaging spectrometer that collects 
contiguous spectral bands from 350 to 2,500 nm using whiskbroom 
(across track) scanning (Vane et al., 1993) at 10 nm wavelength in-
tervals. Building from AVIRIS Classic, a new generation of very high 
signal-to-noise, 5 nm pushbroom (along track) spectrometers includ-
ing AVIRIS-NG run by the AVIRIS programme, the Global Airborne 
Observatory (GAO, formerly Carnegie Airborne Observatory; 
Asner et al., 2012) run by Arizona State University and the National 
Ecological Observatory Network's Airborne Observation Platform 
(NEON's AOP; Kampe, Johnson, Kuester, & Keller, 2009), are sig-
nificantly expanding the quality and extent of available imaging 
spectroscopy data. In addition to a VSWIR spectrometer, both the 
GAO and AOP platforms include an integrated lidar sensor, which 

sample tracking and organization allowed field and flight teams to update the 
ground-based sampling strategy daily. This enabled collection of an extensive set 
of physical samples to support a wide range of ecological, microbiological, biogeo-
chemical and hydrological studies.

3. We present a framework for integrating airborne and field campaigns to obtain 
high-quality data for foliar trait prediction and document an archive of coincident 
physical samples collected to support a systems approach to ecological research 
in the critical zone. This detailed methodological account provides an example of 
how a multi-disciplinary and multi-institutional team can coordinate to maximize 
knowledge gained from an airborne survey, an approach that could be extended to 
other studies.

4. The coordination of imaging spectroscopy surveys with appropriately timed and 
extensive field surveys, along with high-quality processing of these data, presents 
a unique opportunity to reveal new insights into the structure and dynamics of the 
critical zone. To our knowledge, this level of co-aligned sampling has never been 
undertaken in tandem with AOP surveys and subsequent studies utilizing this ar-
chive will shed considerable light on the breadth of applications for which imaging 
spectroscopy data can be leveraged.

K E Y W O R D S

airborne remote sensing, field surveys, foliar traits, hyperspectral imaging, imaging 
spectroscopy, metadata, NEON AOP, sample tracking
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collects co-aligned structural and topographic information. This sen-
sor integration provides great insight into the structure, composition 
and function of ecosystems at meter-scale resolution across land-
scape and regional scales, currently not possible from spaceborne 
instruments. These integrated sensor packages have been utilized 
for, among other things, the mapping of aboveground carbon den-
sity, tree species, foliar traits, biodiversity and mineral composi-
tion of exposed surfaces (e.g. Clark et al., 2006; Colgan, Baldeck, 
Féret, & Asner, 2012; Féret & Asner, 2014; Smith et al., 2002; Wang 
et al., 2019).

While these data have primarily been used to elucidate pat-
terns in the surface of the CZ, they may also provide a window 
into deeper CZ functioning. Because vegetation acts as a surface 
manifestation of less visible CZ components and processes, there 
is the potential to leverage the co-variability between vegetation 
and subsurface characteristics to map critical, but difficult to ob-
serve, soil properties. Early studies have indicated this methodol-
ogy can provide insight into soil microbial functioning (Madritch 
et al., 2014; Soper et al., 2018), soil nutrient status (Chadwick & 
Asner, 2018; Osborne et al., 2017) and the role of geomorphic 
processes in ecosystem organization (Chadwick & Asner, 2020). 
Given that vegetation often obscures direct measurement of soil 
properties, linking land surface and belowground characteristics 
is a particularly promising area of research. However, many uncer-
tainties need to be resolved to determine the potential of these 
relationships to assess landscape scale biogeochemical gradients 
and CZ geography.

Most ongoing research is focused on integration of field and 
airborne datasets to estimate land surface characteristics. The 
Spectranomics programme, associated with the GAO, has con-
ducted extensive collections of foliar samples and species informa-
tion which has supported both species and trait mapping in tropical 
forest systems around the world (Asner & Martin, 2009). NEON has 
expanded the range of ecosystem characteristics being sampled to 
include soil biogeochemistry and microbial samples within the foot-
print of AOP surveys. However, these additional biogeochemical and 
microbial samples are not always associated in time with the flights, 
or in close spatial proximity with the foliar samples, as required for 
directly linking above- and below-ground ecosystem properties 
(Hinckley et al., 2016; Kao et al., 2012).

High-quality, well-timed, and extensively organized ground 
sampling surveys that are targeted to calibrate, validate and ex-
tend site-specific models are necessary to assess the potential of 
imaging spectroscopy data to provide a window to the CZ. These 
efforts require close collaboration among airborne survey teams, 
field scientists and stakeholders in designing sampling schemes 
that ensure the greatest utility of the collected data. The scope 
of these sampling efforts exceeds those of many traditional field 
approaches, and thus require deeper levels of organization, collab-
oration and coordination between researchers across disciplines. 
The methodology we present here provides the potential to trans-
form an AOP dataset from a single investigator-based research 
project on surface distributions of vegetation characteristics, 

into interdisciplinary research on CZ and watershed science, 
supporting a number of research questions through the develop-
ment of coordinated vegetation and soil archives, and geophysical 
datasets.

We developed an approach that leverages the NEON AOP to 
address questions regarding watershed-scale distributions of vege-
tation traits and communities, soil physical/chemical properties and 
microbial functional traits within the East River, Colorado, commu-
nity watershed observatory (Hubbard et al., 2018). An important 
focus of our methodology is the collection of relevant field samples 
and data, co-aligned in time and space with the VSWIR and lidar data 
collected by the AOP over 330 km2 across four watersheds in the 
Upper East River watershed, a headwater of the Colorado River. 
This type of approach could be utilized to address a large range of 
research questions. Here, our central objective was to design sam-
pling schemes that will allow us to explore three specific CZ focused 
questions: Can foliar composition and geomorphic position predict 
soil organic matter content? To what extent do subsurface structure 
and bedrock/soil properties, measured via geophysical imaging, dic-
tate plant community distribution? Can imaging spectroscopy and 
landscape position predict the distribution of microbial functional 
traits throughout a watershed? Accordingly, we designed contem-
poraneous field surveys to collect (a) plant species and trait data and 
(b) a physical vegetation tissue and soil sample archive, which will be 
used to gain a vertically integrated, critical zone perspective.

In this manuscript, we provide a framework for others inter-
ested in pursuing integrated field-airborne research projects with 
the AOP or other airborne sensor platforms. While the details of 
these airborne and field collections are specific to this location and 
project goals, the approach is broadly applicable across a variety of 
sites with appropriate modifications to address different scientific 
questions. We detail the process of planning for an integrated air-
borne and field-based survey, highlight considerations for VSWIR 
data processing, report on field survey outcomes and provide a case 
study examining the generation of foliar trait maps. In the main text, 
we highlight the overall procedure and case study. In Supporting 
Information, we present detailed planning documents, code, input 
data and details of statistical modelling to demonstrate the process 
from planning to products. Accompanying the methodological de-
scriptions, we also provide publicly available data products for indi-
viduals and teams.

Given the promise of this technology and the scale of invest-
ment by government agencies to support these instruments, we 
hope to promote the continued utilization of these methods by a 
broader scientific community. As we expand our knowledge of the 
CZ across sites through the National Science Foundation's Critical 
Zone Collaboration Network and gain a greatly extended imaging 
spectroscopy dataset through the development and deployment 
of NASA's Surface Biology and Geology (SBG) mission (National 
Academies of Sciences Engineering Medicine, 2018), studies explor-
ing how imaging spectroscopy data reveal CZ structure and geog-
raphy are essential to provide insight into ecosystem ecology and 
Earth system functioning.



4  |    Methods in Ecology and Evoluon CHADWICK et Al.

2  | AIRBORNE AND FIELD SURVE Y 
COLLEC TION METHODS

2.1 | Study region

The data collections presented here were completed in the sum-
mer of 2018 across four watersheds in the Upper East River basin of 
Colorado (Figure 1). The study region is home to the Rocky Mountain 
Biological Laboratory (RMBL) and the Department of Energy's 
(DOE) Watershed Function Scientific Focus Area (WF SFA) commu-
nity watershed observatory and is described in detail by Hubbard 
et al. (2018). Briefly, the elevation range spans 2,800–4,000 m above 
sea level and the area is among the coldest in the Rocky Mountain 
region (Clow, 2010). The domain spans lower montane (2,700 m) to 
alpine (3,500 m) systems, which are home to a mosaic of vegetation 
types: multiple conifer species, quaking aspen Populus tremuloides 
stands, riparian shrubs and diverse meadows dominated by peren-
nial grasses and forbs, interspersed with woody shrubs at lower el-
evations (Langenheim, 1962).

This ecosystem has distinct seasonal phases that affect veg-
etation phenology across the mountainous landscape: snowmelt, 
pre-monsoon, monsoon and post-monsoon. Snowmelt and leaf 
out occur during April and May over most of the watershed, when 
air temperatures rise and a large pulse of water enters the system. 
Many plants in these mountainous systems grow rapidly to maxi-
mize a short growing season. Late June and early July is typically 
a dry period following snowmelt and pre-monsoon when most 
vegetated land area in the watershed is between green-up and 
senescence (Figure 2). During this pre-monsoon period, there is 
infrequent rainfall and a period of soil drying where water limita-
tion depends on slope, aspect and soil properties, in addition to 
time since snowmelt (Berdanier & Klein, 2011; Harte et al., 1995). 
This particular year (2018) was characterized by a low snowpack, 
and consequently snowmelt (at the proximal Butte SNOTEL sta-
tion) was 15 days earlier than the 1981–2010 median (Figure 2). 
Monsoon normally onsets in July, and the dry down and senescence 
of vegetation occurs post-monsoon in August and September. The 

seasonal dynamics of plant growth and impact of pre-monsoon dry-
ing can vary greatly across elevation, aspect and hillslope position 
(Wainwright et al., 2020). This site-specific information was essential 
when considering appropriate timing for imaging spectroscopy data 
acquisition and field survey collections, as detailed below.

2.2 | Airborne survey and field collection 
considerations

The NEON AOP survey, and collection of co-aligned ground-based 
datasets, required a combination of advanced planning and real-
time decision-making. We first outline planning that was required 
in advance of the data collections to determine timing, sample or-
ganization procedures and identify sampling areas—the general 
landscapes—where field sampling could occur on a given day. We 
then describe methodologies implemented by the field and flight 
teams during the surveys, including local selection of sample sites—
meadow plots or individual plants—that were selected within a day's 
sampling area.

2.2.1 | Airborne planning and preparation

Scheduling the AOP survey during spring of 2018 required selecting a 
flight window using snowmelt trajectories from prior years with similar 
snowpack, because vegetation phenology is significantly influenced 
by the amount of snow and snowmelt timing (Ernakovich et al., 2014; 
Harte, Saleska, & Levy, 2015). Coordination with the flight team to de-
termine flight timing, duration, and specifications began in February. 
We used the Moderate Resolution Imaging Spectroradiometer 
(MODIS) and Landsat records of normalized difference vegetation 
index (NDVI) at selected sites over a range of elevations within the 
study extent to determine the approximate window between the 
onset of peak greenness and senescence during recorded years. We 
placed particular emphasis on 2002, 2007 and 2012, years that had 
similarly low snowpack (Figure 2). We were aiming for peak greenness 

F I G U R E  1   Upper East River watershed 
study area. (a) Map of four watersheds 
(white outlines) overlain on digital 
elevation model derived from National 
Ecological Observatory Network Airborne 
Observation Platform lidar. (b) Inset map 
for study area. (c) Inset map showing the 
location of the area from map (b) within 
US state boundaries
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because generating foliar trait maps was one of the primary interests 
of many researchers, and peak greenness and high LAI conditions are 
best for these predictions (Asner & Martin, 2008). Based on estimated 
timing of peak NDVI, a desire to hedge on the early side of greenness 
to avoid the chance of early onset monsoonal rains, and aircraft avail-
ability, the airborne survey was scheduled for 13 June–3 July. Using 
historical weather patterns of the survey area, the NEON team built in 
three back-up days for every one day required to complete the full sur-
vey area to allow for down days when cloud cover would prevent data 
collection. Low clouds directly obscure the land surface and diffuse 
cloud cover and aerosols have nonlinear impacts through the VSWIR 
spectrum that are challenging to correct for in processing (Thompson 
et al., 2014). As a result, species and trait mapping is most accurate 
when data are collected in cloud-free and low aerosol conditions.

Flight plan specifications included allowable time of flight, ori-
entation of flight paths and height above-ground level (a.g.l.) of data 
collections. To achieve best illumination conditions, we implemented 
the AOP programme standard of restricting data collection to periods 
when the solar elevation angle is greater than 40° (10 a.m.–2 p.m. in 
this location). We considered multiple flight orientations to minimize 

aircraft flight time spent turning (which can significantly affect total 
flight time and therefore cost) and prioritize collections at lower eleva-
tions first to follow phenological change. Ultimately, we decided on a 
standard north–south orientation with 30% flightline overlap. Finally, 
our target ground resolution was 1-m resolution for both VSWIR 
and lidar DEM pixels once processed, for a nominal survey height of 
1,000 m a.g.l. However, the complex topography of the Upper East 
River meant that despite efforts to adapt flight altitude to match terrain 
variation, the path length between ground and sensor ultimately varied 
by up to 1,500 m about the 1,000 m a.g.l. average in a small number of 
flightlines. We took steps to address these path length issues during at-
mospheric correction in post-flight data processing (described below). 
Additional details regarding the AOP collection can be found in the 
NEON team's post-survey report (Goulden & Musinsky, 2020).

2.2.2 | Fieldwork planning and preparation

In early spring, we began planning our field sampling scope, meth-
odologies and organization scheme. In addition to the research 

F I G U R E  2   (a) MODIS normalized 
difference vegetation index (NDVI) 
for the study region over the growing 
season during recent low snowpack 
years used for determination of peak 
greenness window. NDVI for 2018, along 
with the window of the actual Airborne 
Observation Platform (AOP) survey, are 
also shown. (b) Snow telemetry (SNOTEL) 
site data from the nearest location, 
where historical low snowpack years are 
coloured and the year 2018 is displayed 
in bold. These data are plotted relative 
to the day of a standardized water year 
starting on 1 October
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interests of our group, we surveyed researchers active within the 
study area to understand what data products or inferences from 
the AOP would be useful to their work. We received feedback 
indicating many researchers within the ecological community 
were interested in foliar trait and species maps, and many in the 
critical zone and watershed science communities were interested 
in extrapolating soil C, N and microbial trait characterizations. 
Based on this input, we designed an integrated sampling cam-
paign to collect vegetation, soil physical/chemical, microbial and 
geophysical data at co-located sampling sites to coincide with the 
timing of the AOP survey. We planned to collect samples within 
72 hr of overflight, and without intervening rainfall, to the ex-
tent possible, given the rapid and sometimes unknown rates of 
change in processes of interest (Schmidt et al., 2007; Sorensen 
et al., 2020).

Once we identified the sample types of interest and analyses 
that we wanted to be able to complete with this sampling effort, 
we established a systematic plan for sample tracking using unique 
identifiers, organization, and proper storage and processing, sum-
marized in Figure 3. This avoided confusion, mislabelling or mishan-
dling when collecting and subsetting samples across a series of field 
teams. We made prelabelled field sampling packs and standardized 
field metadata sheets for each sampling team 2 weeks in advance 
of collections to avoid any duplication of sample names and en-
sure all supplies would be available and appropriately labelled. In 
addition, all supplies necessary for microbial biomass analysis and 

preservation for soil DNA extraction were prelabelled and shipped 
to RMBL.

We established appropriate sampling methods for each type of 
physical sample and developed sampling flowcharts to document 
field methods for sampling. These methodologies are described 
briefly in the following section and detailed protocols and flow-
charts are provided in Supporting Information 1. The number of 
sampling sites was determined based on the amount of canopy 
samples desirable for sufficient ground reference data for devel-
oping statistical models to map foliar traits. Based on sample sizes 
in successful canopy-scale trait modelling projects (Chadwick & 
Asner, 2016; Martin et al., 2018; Singh, Serbin, McNeil, Kingdon, & 
Townsend, 2015), previous modelling efforts (Asner et al., 2011), 
and logistical realities, we aimed to collect samples from 400 sites 
across the 330 km2 area: 200 meadows, 100 trees and 100 shrubs. 
To achieve this, we planned for 10 days of collections during the 
AOP survey, with daily collections of 20 meadow plots (1 × 1 m), 
10 trees and 10 shrubs (total of 40 sites) per day within a sampling 
area.

We identified 15 potential sampling areas in advance that could 
be selected for field survey during the course of AOP flights. When 
identifying areas for potential sampling, we selected areas spanning 
the elevation range of ecosystems within the watersheds, repre-
senting different geology, and were co-located with existing field 
data collections or monitoring when possible. An important consid-
eration was working with RMBL to ensure we could obtain access 

F I G U R E  3   Flowchart detailing the handling of samples in the field, preprocessing work in the field-based laboratory, and storage and 
shipment. Each individual tree, shrub and meadow plot location was tagged and assigned an internal identifier during collection and an 
International Geo Sample Number (IGSN) identifier was assigned to each associated physical sample after processing and storage
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and permission for the type of sampling we planned, and therefore 
land ownership was also an important criterion. Finally, we wanted 
to ensure that field sampling occurred in locations that would span 
multiple days of data collection, to ensure that statistical model 
development would incorporate reflectance data from a variety of 
flight conditions and consequently lead to more robust and general 
models.

We organized a field team of 32 individuals (15–20 per day) to 
participate in the field collections and process samples as needed 
for preservation in the laboratory at RMBL. To standardize the 
sampling procedures for each area and account for turnover in 
field team members, we conducted training in advance, distrib-
uted detailed protocols and flowcharts to each sampling team, 
and scheduled people to maintain continuity of at least one team 
member (Figure 3; Supporting Information 1). We planned for 
four teams to conduct physical sample collections each day, two 
for meadow plots and one each for tree and shrub individuals. In 
addition to physical sample collection, we planned for one team 
to rotate across the sampling area, visiting all sampling sites to 
measure soil moisture and depth, and to collect high-accuracy GPS 
data using a Real-Time Kinematic (RTK) enabled GPS receiver. In 
addition, across a day's sampling area, this rotating team collected 
geophysical parameters to gain a more spatially resolved dataset 
on subsurface soil physical characteristics including soil texture 
and moisture. Finally, we planned for post-airborne survey fol-
low-up visits during the subsequent 3 months to all sampling sites 
for collection of additional subsurface soil samples. These visits 
allowed us to capture greater depth intervals than were possible 
during the initial field campaign for analysis of temporally stable 
soil properties.

2.2.3 | Field and airborne survey implementation

Daily decisions on whether flights would take place were coordi-
nated between the flight team and the field team leads. Prior to field 
sampling, the flight team assessed weather conditions and forecasts 
for the day from their base of operations in Boulder, CO. They then 
contacted the field team lead by phone to discuss the conditions at 
the site and make a final determination on go/no-go for that day. Our 
selection of daily sampling areas was determined dynamically from 
our 15 pre-identified sites across the study region based on the loca-
tion of the previous day's AOP survey.

To ensure that sampled vegetation was not shaded by topogra-
phy, clouds or adjacent vegetation during the time of overflights, the 
AOP team provided preliminarily processed data within 24–36 hr 
of the day's survey. These data included a coarse orthorectification 
and processing of radiance data to four-band, red, green, blue and 
near-IR images. Our teams were equipped with iPads with these 
data loaded to enable notation of approximate locations of sampling 
and to photograph the site, to augment the centimetre-scale accu-
racy GPS location collected independently (process documented in 
Supporting Information 1).

When selecting individual sampling sites at the day's sampling 
area, each team chose plots or individuals with a high cover of 
photosynthetically active vegetation and homogeneous char-
acteristics relative to the immediately surrounding area (within 
~1.5 m) to decrease the confounding impact of neighbouring pixel 
reflectance (see Supporting Information 1 for additional details). 
In addition, within a sampling area we selected a set of sites that 
represented a range of species and species assemblages, which 
was relatively easy in this system with few dominant tree species 
and patchy meadow environments. Leaf samples for determining 
foliar traits and species identities were collected for statistical 
model development. The tree and shrub sampling methods were 
analogous to those developed and utilized by the Spectranomics 
group (Asner & Martin, 2009, 2016). For meadow sites, we de-
cided on foliar sampling procedures similar to clip strips, 0.1 × 2 m 
foliar sampling areas, implemented at core NEON sites (Weintraub 
& Hinckley, 2018), though we chose to sample the top 10 cm of 
green vegetation across the full 1 m2 plot rather than the strip 
orientation.

In addition to field data collected to build statistical relation-
ships with airborne acquisitions, additional samples were collected 
at each location to develop a sample archive which will expand the 
inferences that we may be able to draw from a single AOP flight. 
These samples included, litter, roots, bulk density sample from 2 
to 7 cm depth, loose soil from 0 to 10 cm and associated micro-
bial samples. The details of the collection methodologies for each 
of these sample types are documented in Supporting Information 
1. To our knowledge, this level of co-aligned sampling has never 
been undertaken in tandem with AOP surveys and subsequent 
studies utilizing this archive will shed considerable light on the 
breadth of applications for which imaging spectroscopy data can 
be leveraged.

3  | AIRBORNE AND FIELD SURVE Y 
COLLEC TION RESULTS

The integrated aerial and field surveys resulted in the development 
of coordinated and complementary, high-resolution datasets that 
span the full extent of the study region. In this section, we docu-
ment the data and sample archive generated directly from the paired 
surveys.

3.1 | Remote sensing datasets

The AOP survey was completed over 7 flight days between June 
12 and 26, with a total of 102 individual flight lines collected. This 
collection resulted in the 72 lines required to span the survey area 
being surveyed under <10% cloud cover conditions, which allowed 
us to make a wall-to-wall mosaic of VSWIR data for the study area. 
NEON provided VSWIR data that had been processed through 
their standard processing chain (Goulden & Musinsky, 2020). In the 
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following section, we discuss additional measures we took, custom-
izing the processing of these data to improve them based on our site 
conditions.

3.2 | Ground reference data

We exceeded our field survey goal, collecting samples from 437 
sample sites within 72 hr of AOP survey across 12 of the 15 possible 
study areas within the sampling domain. Sampling areas are shown 
in Figure 1a and an example of the distributions of sites within a sam-
pling area are shown in Figure 4 insets. These collections took place 
over the course of 3 weeks in June of 2018. In addition, we collected 
follow-up samples from 40 conifer and riparian willows sites across 
the domain within the two subsequent weeks, because these vegeta-
tion types were less susceptible to the rapid phenological change ex-
perienced by meadow systems. These additional samples increased 
the total sampling areas to 13 in total and, in all, resulted in 487 foliar 
samples and sites with documented species cover (Chadwick, Grant, 
Henderson, Breckheimer, et al., 2020). These site data, combined 
with data from foliar chemical analysis (Chadwick, Grant, Bill, et al., 
2020) and aggregated leaf area and mass data (Chadwick, Grant, 
Henderson, Scott, et al., 2020), were used as ground reference data 
for the development of the models for trait mapping discussed in 
the following section. Details of foliar laboratory analysis and LMA 
calculations are found in Supporting Information 1. The substantial 
upfront effort to develop a coordinated sample identification sys-
tem, combined with procedural flowcharts (Figures S3–S5), allowed 
us to collect all specified samples from 437 locations with minimal 
sample loss or mislabelling.

3.3 | Sample archive development

Careful sample tracking and management resulted in a geolocated 
sample archive of plant foliar tissues, litter, roots and soil samples. 
The surface soil samples from the primary 437 sites were split 
for immediate analysis of microbial biomass, air drying for further 
chemical analysis, and subsampled and archived at −80℃ for rhizo-
sphere and bulk soil microbial DNA analyses. A bulk density sample 
was collected from the majority of sites, except where not possible 
due to rocky or other conditions, for both density calculation and 
soil texture analysis. The follow-up subsurface soil sampling, which 
took place through October, resulted in a total of 1,660 soil samples, 
which were air-dried and are currently being analysed. In addition, 
we collected data on soil moisture and depth at the time of sampling 
for inclusion as metadata.

3.4 | Geophysical sampling

Local scale (~100 m extent) geophysical datasets including soil ap-
parent electrical conductivity and soil moisture were also success-
fully collected at the 12 sampling areas (Supporting Information 
1). The soil apparent electrical conductivity within multiple depth 
intervals between 0 and 1.8 m was collected using a multi-coil elec-
tromagnetic induction (EMI)-based system. The soil electrical con-
ductivity is primarily influenced by soil water content, fluid EC and 
grain surface conductivity. These data can be combined with soil 
samples to provide spatially continuous estimates of soil texture and 
moisture at multiple depths. These datasets encompass the sampling 
sites and immediately surrounding areas, and will provide a valuable 

F I G U R E  4   Input datasets. (a) True 
colour map of a subset of one of the 
sampling areas located in Figure 1, with 
sampling sites outlined in red. (b) Needle 
leaf map, with blue areas identified as 
pixels containing vegetation with needle 
leaves. (c) Top-of-canopy vegetation 
height (TCH) map for the study area. (d) 
Shade mask, with black areas indicating 
locations that were shaded at the time of 
the flight
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intermediate resolution of information on the distribution of soil 
physical properties (Figure S2).

4  | AOP DATA PROCESSING AND TR AIT 
MAP C A SE STUDY

4.1 | Custom imaging spectroscopy and lidar data 
processing

To correct and mosaic the imaging spectroscopy data with a trans-
parent and reproducible process, we summarize our procedure here 
with additional information and specifications on all files referenced 
here provided in Supporting Information 2. We used raw space 
(non-orthorectified) radiance data as our starting dataset (Goulden, 
Hulslander, et al., 2020). The prior processing steps are extensively 
documented by NEON (Gallery & Leisso, 2014). In brief, to generate 
these data, NEON processed the VSWIR data from digital number 
readings from the imaging spectrometer into radiance values using rig-
orously determined calibration parameters. Using a best-estimate of 
the three-space position and orientation of each sensor on the VSWIR 
focal plane along with a surface model from the lidar, they produced 
input geometry (IGM) and geometric lookup table (GLT) files for trans-
lation from raw to orthorectified space. In addition, observation condi-
tions (OBS) files were provided that documented path length (sensor 
to ground in m), ground-to-sensor azimuth angle, ground-to-sensor ze-
nith angle, ground-to-sun azimuth angle, ground-to-sun zenith angle, 
phase, surface slope, surface aspect, cosine i and gps time for every 
VSWIR pixel (Kampe, Gallery, Goulden, Leisso, & Krause, 2016).

Radiance data provide a full-spectrum reading of light received 
at the sensor during flight. We atmospherically corrected these radi-
ance data to generate estimates of the apparent reflectance spectra 
that would have been observed at the land surface without atmo-
spheric effects. To do this, we used the Atmospheric CORrection 
Now (ACORN-6LX, Imspec LLC, Glendale) software package, which 
uses MODTRAN lookup tables and estimates of atmospheric and 
surface water derived from wavelengths in the 950 and 1,150 nm 
regions to estimate surface reflectance. The simultaneous estima-
tion of water vapour and surface liquid water improves the water 
vapour accuracy, and therefore surface reflectance estimation 
(Figure S7). ACORN does not utilize input data for individual pixels 
on path length, elevation, timing and view-angle geometry, nor does 
it automatically estimate the aerosol density within the atmosphere. 
Because these values can change significantly across a flightline we 
utilized a custom method that calculated reflectance in 200 m ker-
nels with all local topography and view-angle geometry information, 
effectively accounting for variable flight conditions within each line 
that would highly influence the estimates of surface reflectance. 
This process is an improvement over standard implementation of 
atmospheric algorithms and is detailed in Supporting Information 
2. Implementation code repositories are referenced in Supporting 
Information 4, though ACORN, as with most atmospheric correction 
software, is proprietary.

We note that this procedure worked well at this site due to rela-
tively mild atmospheric conditions (low water vapour and aerosols), 
and because of the persistent presence of vegetation which we could 
leverage to estimate aerosol depth. In other regions with greater 
aerosol content or high levels of humidity, more sophisticated at-
mospheric correction approaches may be needed (Thompson 
et al., 2018). Additional steps, including corrections for bidirectional 
reflectance distribution function (BRDF) effects or spectral smooth-
ing may be applied (Thompson et al., 2019) as desired, but were not 
in this case. The outputs of this process are estimates of apparent 
surface reflectance, water vapour (wtrv), estimated atmospheric vis-
ibility in km and liquid water (wtrl, also called canopy water content 
or CWC over vegetation). The GLT files are subsequently used to 
convert these images, as well as images containing the observation 
parameters (OBS), from raw space to map space.

Once converted to map space, we selected flightlines to prioritize 
for inclusion in the complete mosaic. Some areas were flown multiple 
times if visibility conditions were suboptimal during an initial collection, 
or as part of flight operations. We chose the flightlines that aligned 
as closely in time to the field collections as possible and such that no 
rainfall events occurred between the time of sampling and the airborne 
surveys. In addition, when possible, we chose lines collected during the 
highest solar elevation angles to decrease the amount of topographic 
or vegetation shading within the line. In cases where clouds or cloud 
shade was visible within the line, we manually delineated that area and 
masked it out, using data from other lines to backfill. The flight plans 
were designed with approximately 30% overlap from one line to the 
next, which allowed us to mosaic the lines together using rules that 
specify the selection of the minimum angle between the sensor and 
the sun (minimum phase angle) at the time of data collection.

Finally, we generated shade masks using a custom ray tracing al-
gorithm that estimates what pixels would have been shaded at the 
time of AOP data collection at the site (Figure 4). This is generated 
using the solar and sensor view angle geometry data (along with time 
of year and specific geolocation information) in the OBS data, IGM 
data and the digital surface elevation model (Goulden, Hass, et al., 
2020; Goulden, Hulslander, et al., 2020). This concept was first im-
plemented by the GAO programme (Asner et al., 2007) and calcu-
lates a path traced between the sun, each point on the ground, and 
the sensor, and any point that intersects the surface is considered 
shaded. Additional details are provided in Supporting Information 3 
and links to code repository in Supporting Information 4. We found 
that this model estimates high levels of shading in forested regions, 
possibly due to the beam divergence of the lidar used (0.8 mRad), 
and therefore we consider it to be a conservative mask. Given 
that this mask potentially removes pixels that are partially sunlit, it 
may not be appropriate for all applications, but it does help ensure 
well-illuminated pixels can be identified for model development.

To make these data available to the community in a way that allows 
for open access and viewing without specialized software and without 
needing to download these large data volumes, we have made these 
datasets available in their processed and mosaiced form on Google 
Earth Engine (GEE; Brodrick, Goulden, & Chadwick, 2020). This is the 
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first Assignable Asset project to utilize this platform for dissemination, 
but the capacity exists for others to do so as well, and this platform 
could be more heavily leveraged by the community as a mechanism of 
free data dissemination. This platform allows for visualization, selec-
tion, extraction and download of portions of this dataset without access 
to high-performance computing, though the mosaic is also available 
through the DOE's ESS-DIVE repository (Varadharajan et al., 2019). 
Accessing these data through GEE also facilitates rapid aggregation of 
additional remotely sensed datasets that can be used to extrapolate 
predictions made using NEON AOP data in either time or space.

4.2 | Trait model development

We present a case study for the types of maps that can be gener-
ated utilizing the NEON AOP platform in this type of biome, with an 
overview of the methods we implemented here and detailed steps 
and code references in Supporting Informations 3 and 4.

With the combined use of high-accuracy GPS data and GPS 
points recorded in the iPad software based on the preliminary imag-
ery that we received from the AOP team, we generated polygons that 
represent the spatial extent of each sampling site (Chadwick, Grant, 
Henderson, Breckheimer, et al., 2020). For meadow plots, we collected 
high-accuracy GPS points from each corner, and we defined a poly-
gon for the plot based on the pixels that had the most spatial coverage 
within the corner points. For shrubs and trees, we outlined the extent 
of the crown for each individual that was sampled after field work was 
complete and the spectral data were processed through full orthorec-
tification (Figure 4). This method allows for the selection of all pixels 
that are associated with the individual that was sampled, rather than 
selecting an arbitrary distance from the GPS point that was collected. 
Utilizing an estimated crown diameter to automatically define pixels 
is problematic because of the non-uniform nature of tree canopies. 
This procedure allowed us to circumvent the challenging problem of 
absolute geospatial accuracy of both field and aircraft data by utilizing 
field and expert judgement to determine relative alignment between 
datasets and identify pixels for extraction. We extracted spectral in-
formation from each crown with a centroid-based extraction method, 
code reference in Supporting Information 4.

Once the spectral data were extracted from the sampling site 
polygons, we separated vegetated pixels into needle and non-needle 
classes to generate a classification map based on the spectral dif-
ferences between these leaf types (Figure S10). We trained a deep 
learning model with custom architecture, detailed in Supporting 
Information 3, using the site level VSWIR data, combined with ad-
ditional hand delineated areas containing non-conifer land cover 
(Chollet et al., 2015; Abadi et al., 2015). The model performed with 
0.998 true positive rate and 0.982 true negative rate, with ‘posi-
tives’ being non-needle identification. We assessed false positives 
relative to the number of conifers (e.g. number of falsely identified 
conifers divided by the number of conifer training pixels), due to the 
class imbalance, and accepted a relatively high false-positive rate of 
0.2, though we note that some of these false-positive points were 

shaded pixels, inflating this estimate. This model was applied to all 
flightlines and uploaded to Google Earth Engine (GEE) for mosaicing.

We then utilize a partial least squares regression (PLSR; Feilhauer, 
Asner, Martin, & Schmidtlein, 2010; Wold, Sjöström, & Eriksson, 2001) 
approach to map foliar traits across the study area by leaf type 
(Figure 4b). PLSR models have been used to map canopy foliar traits in 
a variety of systems (Asner, Martin, Anderson, & Knapp, 2015; Dahlin, 
Asner, & Field, 2013; Singh et al., 2015); however, additional meth-
ods have been employed for this type of modelling, including radia-
tive transfer to estimate a limited number of canopy level traits from 
leaf-level spectra, ensembles of statistical methods, and Bayesian ap-
proaches (Feilhauer, Asner, & Martin, 2015; Ferreira et al., 2018; Wang 
et al., 2019). Detailed information on the PLSR model metaparameters 
used to develop the maps presented here are provided in Supporting 
Information 3.

To map uncertainty in the model predictions, we generated 10 
different models for needle and non-needle leaf species using dif-
ferent testing holdout sets of discrete sites (Singh et al., 2015; Wang 
et al., 2019). Each of these models was developed with a 100-fold 
cross validation procedure that utilized a 70% training set and 30% 
validation set with each fold, and then assessed based on the 10% 
of testing sites that were not included in that model's development 
(more detail in Supporting Information 3 and code reference in 
Supporting Information 4).

Fits of the PLSR testing set predictions from the iterative model 
development are shown in Figure 5. These fits are determined with the 
final combination of the needle and non-needle leaf models. The fo-
liar N, LMA and leaf water content (LWC) models perform well, which 
is consistent with models from many other studies (Serbin, Singh, 
McNeil, Kingdon, & Townsend, 2016; Singh et al., 2015). Foliar C is 
not well predicted across this study region, which is likely due to the 
variety of structural and non-structural forms that C takes in leaves 
across the wide range of vegetation types considered here, which gives 
the potential for widely varying effects on the reflectance spectrum. 
Models of δ13C also do not perform well, likely for similar reasons. It is 
probable that adaptations that alter δ13C, often associated with water 
use efficiency (Farquhar, Hubick, Condon, & Richards, 1989), would 
have inconsistent impacts on the reflectance spectrum.

4.3 | Trait mapping and model uncertainty

We applied each of the 10 models across the VSWIR mosaic and 
used the mean value as the ensemble predicted value for each pixel. 
Standard deviation was also mapped to identify areas that have 
unstable predictions across models. We did not shade mask these 
model applications because our developed shade mask was con-
servative and might remove otherwise suitable pixels. By generat-
ing maps of uncertainty between models, pixels that have unstable 
predictions can be removed using those criteria or the shade mask at 
the user's discretion. We uploaded these maps to GEE to integrate 
the needle and non-needle leaf models, mosaicing, and masking of 
non-vegetated pixels (Supporting Information 3).
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Maps of foliar traits and the standard deviation of their predic-
tions utilizing these methods are available publicly at 1-m resolution 
on GEE (Supporting Information 4; Chadwick, Brodrick, Grant, et al., 
2020). Modelling methods and structures utilized for generating 
these models and their mapping products are constantly being up-
graded and improved. We did not completely exhaust efforts to op-
timize these trait models. These maps, with a clear understanding of 
the methodologies and associated error estimates, can be used for 
assessments across the study area both across and within vegetation 
types (Figure 6).

Examples of situations that can result in high variability in foliar 
trait estimates between models are shown in Figure 7. An area that 
was partially in cloud shade at the time of overflight results in an 
area having generally high variation in N estimates, and can be used 
to identify an area that is unsuitable for use in further analysis and 
interpretation While calibrating spectrometer acquisitions from raw 

data to radiance values, the AOP team develops a stochastic model 
to approximate radiance at a small number of bad detector elements. 
Modelled bad detector elements are determined through a least 
squares estimation on pre-determined intervals of radiance values, 
and can occasionally result in the introduction of artefacts like those 
shown in Figure 7d–f; note that artefacts occur in isolated regions of 
the spectra, which have been identified as bad detector elements, 
and consequently are only present in trait mapping (Figure 7e,f) and 
are not present in all images, such as Figure 7d. Finally, Figure 7g–i 
shows the case where high N values are predicted in grass on a local 
golf course. While this may be the case, a high amount of error is 
associated with these estimates, which is likely due to the absence 
of any cultivated grass samples in our model development datasets. 
These error maps provide a method for identifying and removing 
pixels that have unstable trait predictions and are likely unsuitable 
for trait modelling and interpretation.

F I G U R E  5   Comparison scatter plots 
of field-measured foliar trait values and 
PLSR-estimated values at the (averaged) 
top of canopy level for each of the 10 
PLSR models developed with linear fits 
(solid black for study region fits across leaf 
types) and the 1:1 (dashed) lines displayed. 
Coloured points and fits indicate needle 
(blue) and non-needle (orange) leaf types. 
Foliar N and C are in weight % and C:N is 
a molar ratio

F I G U R E  6   Predicted trait values and 
model uncertainties. (a–c) Foliar trait 
maps of N (weight %), leaf water content 
(%) and leaf mass per area (LMA, g/m2). 
Mapped quantities are the mean values 
from the 10 PLSR models (one per crown-
based holdout set) predicted across 
vegetated pixels within the study area. 
The site shade mask is not applied. (d–f) 
The corresponding standard deviation in 
the predicted values across all 10 PLSR 
models for the study area. Non-vegetated 
areas are shown in white
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5  | DISCUSSION

Although tremendous information can be gained from imaging 
spectroscopy data, they are not a panacea. The scientific utility of 
the information derived from these data are a function of the qual-
ity of ground reference data, care and attention to detail in data 
processing, and iterations that locate and resolve issues that arise 
from site-specific conditions. We developed a methodology for in-
tegrating airborne and ground sampling across the Upper East River 
catchments, consisting of vegetation with different leaf types and 
life strategies, to develop a remote sensing data and physical sam-
ple archive that will allow us to leverage these data and resource 

investments for a wide range of ecological and Earth system stud-
ies. In addition, we present a case study of developing foliar trait 
maps from this archive, with associated processing code, to dem-
onstrate a mapping application. The variable topographic condi-
tions, daily atmospheric conditions, vegetation types and goals of 
future studies were accommodated by advanced planning and by 
sampling widely across the study domain. The methods presented 
here provide a blueprint for other interdisciplinary and team science 
studies, which can be customized as required based on the ques-
tions being posed by a particular community. Some general themes 
arise that are universal including the need for (a) thorough advanced 
planning and coordination, (b) considering seasonal rates of change 

F I G U R E  7   Areas with high variability in predicted traits. A small area that had cloud shadow in true colour (a), mean foliar N predictions 
(b) and the standard deviation of those predictions (c). Flightline where errors in radiance calibrations lead to highly variable predictions (e, f) 
that cannot be seen in the true colour imagery (d). Areas of manicured grass (g) have high levels of variability in predictions (i), likely because 
no calibration samples were collected in this type of vegetation
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of characteristics of interest, (c) careful processing and screening 
of reflectance data to ensure high input data quality and (d) itera-
tion between model development and evaluation at the level of ex-
tracted spectra, and application of models across the full study area 
to identify potential issues that arise in the mapping process.

Sample labelling and tracking along with a data management 
system are critical for integration of such diverse datasets and must 
be planned before data acquisition. This will allow us to continue to 
integrate airborne, biogeochemical and geophysical datasets as re-
sults from more time-intensive chemical analyses become available. 
It was essential to conduct substantial planning and coordination for 
sample handling, processing and organization well in advance of the 
field surveys. While we acknowledge that the scope of this project 
is more extensive than may be possible for many groups, due to the 
large number of researchers working in the Crested Butte area, the 
collections presented here could be scaled down or altered based on 
the science questions being undertaken. When determining a sam-
pling plan, we encourage researchers to consider (a) what land sur-
face characteristics they need to quantify to extrapolate site-level 
insights and ensure that they will achieve a large enough sample 
size for their intended statistical methods and (b) sample across the 
range of variation that occurs in the study area and across flightlines 
or other external characteristics that may result in variation in spec-
tral reflectance.

The timing of these collections was particularly important 
due to the rapid phenological change throughout the season, and 
well-calibrated models were therefore dependent on both spatial 
and temporal alignment of field and airborne data. In addition, 
datasets such as microbial composition, soil moisture and soil nutri-
ent status change at different and sometimes unknown rates within 
and across seasons (Schmidt et al., 2007; Sorensen et al., 2020), so 
we planned to sample contemporaneously with the AOP survey to 
avoid temporal mismatch. This too may present a challenge to other 
groups depending on the characteristics of interest, but whenever 
possible, we recommend collecting and stabilizing co-aligned sam-
ples of characteristics that may change rapidly (i.e. microbial com-
munities, foliar samples) even if there is not yet funding to analyse 
them so that they are available for future projects. On the other 
hand, characteristics such as soil texture and mineralogy which are 
stable for long periods, or species identities of long-lived individu-
als, could be put off until later and only collected if desired.

Processing VSWIR data also requires consideration of local con-
ditions and there is not, as of this writing, a one-size-fits-all method-
ology. Here, data were collected in a high montane, topographically 
complex system. As a result, we did not face many challenges asso-
ciated with high levels of atmospheric aerosols and water vapour, 
which can cause challenges in polluted or humid lowland environ-
ments. However, we did have to contend with the variable path 
length issues that arise from the complex terrain. Adapting mosa-
icking criteria also proved critical to minimize the changes in view 
angle between flightlines due to the highly variable topography. 
These were issues that we were able to address through careful 
consideration of the system and its particular requirements.

Finally, a further important consideration is the potential for in-
troducing artefacts during watershed-scale applications of PLSR or 
similar models across flightlines that have inherently variable condi-
tions. Model performance statistics, such as R2 and root mean square 
error from testing set ground data, are often insufficient criteria for 
selection. Some models can show high performance, yet also induce 
substantial artefacts when applied across flightlines due to variable 
flight conditions. As an example, despite roughly equivalent model 
performance statistics, we chose to utilize brightness-normalized 
spectra during PLSR generation. This ensured that the model fit spec-
tral features rather than simply overall pixel brightness (which can be 
very characteristic in conifers, for example), and substantially reduced 
inter-flightline artefacts. This was something that we could only de-
termine with certainty by applying different models across the mosaic 
to observe what issues arose across the VSWIR dataset. These efforts 
were assisted by mapping the standard deviation of the model predic-
tions to identify areas that had poor quality spectral data.

While there are significant logistical and financial challenges 
to implementing this approach, the methods presented above pro-
vide a framework for doing so in a collaborative and effective man-
ner. We also note that many ancillary benefits were realized from 
this intensive field survey: scientists at a range of career stages 
were able to spend time together working towards a common goal 
which led to many productive conversations and strengthened 
relationships; we conducted trainings that were attended by sci-
entists and students, many of whom were only able to participate 
in one day of field work, but were still able to learn about our proj-
ect and methodology; and we were able to include a large number 
of undergraduates, many of whom continue to be engaged in the 
project.

6  | CONCLUSIONS

The challenges of integrating imaging spectroscopy data with detailed 
field collections are worth working through for many applications. Our 
methodology transformed the use of airborne datasets from single 
investigator-based research in plant ecology to interdisciplinary re-
search on ecosystem ecology and CZ science, supporting a number of 
research questions. In particular, coordinated plant, soil and geophysi-
cal datasets can open a door to understanding subsurface controls 
on plant species distribution and dynamics as well as plant controls 
on soil biogeochemistry. The scope of information gained from these 
studies can be enormous, enabling a quantitative understanding of 
landscape distributions and variability in traits at scales and resolu-
tions not previously possible. Here, we provide a set of tools on which 
others can build at this site or elsewhere to gain landscape scale per-
spective on questions of ecology and Earth system science.
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